Abstract
Temporal action detection (TAD) aims to identify and localize action instances in untrimmed videos, which is essential for various video understanding tasks. However, recent improvements in model performance, driven by larger feature extractors and datasets, have led to increased computational demands. This presents a challenge for applications like autonomous driving and robotics, which rely on limited computational resources. While existing channel pruning methods can compress these models, reducing the number of channels often hinders the parallelization efficiency of GPU, due to the inefficient multiplication between small matrices. Instead of pruning channels, we propose a Progressive Block Drop method that reduces model depth while retaining layer width. In this way, we still use large matrices for computation but reduce the number of multiplications. Our approach iteratively removes redundant blocks in two steps: first, we drop blocks with minimal impact on model performance; and second, we employ a parameter-efficient cross-depth alignment technique, fine-tuning the pruned model to restore model accuracy. Our method achieves a 25% reduction in computational overhead on two TAD benchmarks (THUMOS14 and ActivityNet-1.3) to achieve lossless compression. More critically, we empirically show that our method is orthogonal to channel pruning methods and can be combined with it to yield further efficiency gains.